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We prove that a Gibbs measure with a finite range interaction evolved under a
general reversible local stochastic dynamics remains Gibbsian for a short inter-
val of time. This generalizes previous results for Glauber dynamics.
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1. INTRODUCTION

The evolution of a Gibbs measure under a stochastic dynamics is studied in
ref. 4 in the context of high-temperature Glauber dynamics. This dynamics,
when started from a low temperature state, can be interpreted as ‘‘heating
the system.’’ The question is whether at any time t > 0 a reasonable
Hamiltonian Ht can be associated to the measure at time t, i.e., such that
informally mt=e−Ht. If we start from a low-temperature state, then it can
happen that no reasonable Ht exists. Since high-temperature dynamics
started from any initial measure converges exponentially fast to the unique
stationary measure (which is a high-temperature Gibbs measure), it is
slightly surprising that non-Gibbsian measures could arise in the course of
such an evolution. The presence of transitions Gibbs to non-Gibbs in the
course of stochastic evolutions also provides a new motivation for the
study of non-Gibbsian measures and the search for a reasonable extension
of the present Gibbsian formalism. All results in ref. 4 are obtained for



Glauber dynamics (spin-flips) and the ‘‘single-site’’ character of this
dynamics was strongly used.
It is therefore natural to study the time evolution of a Gibbs measure

under more general stochastic dynamics, such as Kawasaki or a mixture of
Glauber and Kawasaki dynamics. In ref. 13 it is proved that a product
measure evolved under a dynamics sufficiently close to independent spin
flip dynamics remains a Gibbs measure for all times. This result includes
the case of a small Kawazaki perturbation of independent spin flips but
does not include, e.g., the case of a (even infinite temperature) Kawazaki
dynamics.
In this paper, we concentrate on the short time behavior of a Gibbs

measure under a general reversible local stochastic dynamics. We prove
that for a short interval of time (depending on the range of the dynamics
and of the range of the initial measure) a Gibbs measure with finite range
interaction remains Gibbs, thus extending Theorem 4.1 of ref. 4. The
intuition behind this result is simply that for short times ‘‘almost nothing
changes,’’ i.e., a typical trajectory consists of a ‘‘sea’’ of lattice sites where
the configuration remains constantly equal to the initial one (non-active
sites) and ‘‘isolated islands’’ of sites where the configuration changed
(active sites).
The technical tool to formalize this intuitive picture is a generalization

of a space time cluster expansion used in the proof of Theorem 4.1 of
ref. 4. The polymer weights in this expansion are controlled for small times
by the overwhelming small probability that activity occurred inside a
polymer, where activity means that at every site of the polymer the govern-
ing Poisson clock rang at least once. The factorization property is obtained
naturally in the case of non-interacting dynamics which can be viewed
as generated by independent Poisson processes. In the interacting case,
a Girsanov formula is used to go back to the non-interacting case.
Intuitively, it is not entirely surprising that conservation of the Gibbs

property for short times is a rather robust statement, only dependent on
locality. However, we expect that the presence of transitions Gibbs-non-
Gibbs is very sensitive to the type of dynamics considered and in particular
to the presence of conserved quantities.
Our paper is organized as follows. In Section 2 we define Gibbs mea-

sures and introduce the local stochastic dynamics which we use. In
Section 3 we state our results and Section 4 is devoted to proofs. For the
sake of notational simplicity, we do the complete proof for the easiest (non-
Glauber) non-interacting dynamics: the simple symmetric exclusion process
(i.e., non-interacting Kawasaki dynamics) starting from a Gibbs measure
with nearest neighbor interaction. We then obtain the same result for
general reversible local non-interacting dynamics starting from a finite
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range Gibbs measure as a rather straightforward generalization. To include
the interaction of the dynamics, we use a Girsanov’s formula and treat the
extra factors due to the dynamics as an additional ‘‘interaction on trajec-
tories.’’

2. NOTATIONS AND DEFINITIONS

2.1. Configuration Space

We consider spin systems on the lattice Zd. The configuration is given
by a map s: ZdQ {0, 1} where we interpret s(x)=1, resp. s(x)=0, as the
presence, resp. the absence, of a particle at site x. The set of all configura-
tions is denoted by W={0, 1}Z

d
. With the product topology, this is a

compact metric space. S is denoted to be the set of all finite subsets of Zd

and for A … Zd,FA denotes the s-field generated by {s(x): x ¥ A}; we write
it F when A=Zd. For s, t ¥ W, we denote sLtLc the configuration defined
by

(sLtLc)(x)=˛
s(x) if x ¥ L.

t(x) if x ¨ L.

The distance between x=(xi)i=1· · · d and y=(yi)i=1· · · d is |x−y|=
;d
i=1 |xi−yi |, and if |x−y|=1, we write OxyP meaning that OxyP is a
nearest-neighbor bond. For L ¥S, the set of all nearest-neighbor bonds in
L is denoted by

B(L)={OxyP: |x−y|=1, x, y ¥ L}.

Between bonds, we define a distance d; for b=OxyP, bŒ=OxŒyŒP,

d(b, bŒ)=min{|x1−x2 |, x1 ¥ {x, y}, x2 ¥ {xŒ, yŒ}}.

A function f: WQ R is local if ,A ¥S, f ¥FA. The set of all local func-
tions is denoted L and any continuous f: WQ R is the uniform limit of
elements in L. C(W) denotes the set of all continuous functions. For
x ¥ Zd, yx denotes the configuration shifted by x, i.e.,

(yxs)(y)=s(x+y),

and similarly yx acts on functions via (yxf)(s)=f(yxs), and on measures
via (yxm)[f]=m[yxf] for any local function.
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2.2. Interactions, Gibbs Measures

An interaction is a map F:S×WQ R such that

1. F(A, · ) ¥FA, -A ¥S.

2. F is uniformly absolutely summable (UAS), i.e., for all x ¥ Zd,

C
A ¦ x
sup
s ¥ W

|F(A, s)| <..

An interaction is translation-invariant if for all A ¥S, F(A+x, s)=
F(A, yxs). In that case UAS is equivalent with

||F||1=C
A ¦ 0
sup
s ¥ W

|F(A, s)| <.

and the set of all translation-invariant interactions forms a Banach space
B1 with norm || · ||1. An interaction F is called finite range if there exists
R > 0 such that diam(A) > R implies that F(A, · )=0. We denote Bf.r. the
set of all translation invariant finite range interactions. Given F ¥B1,
L ¥S, the Hamiltonian HL(s | t) with boundary condition t is given by
the absolutely convergent series

HL(s | t)= C
A 5 L ]”

F(A, sLtLc),

also denoted HtL(s), and the Gibbs measure m
t
L (at finite volume L and

boundary condition t) is defined on (WL,FL) by

mtL(A)=
;s ¥ WL

1A(s) e−H
t
L(s)

ZtL

where

ZtL= C
s ¥ WL

e−H
t
L(s)

is the normalizing constant. A measure m on (W,F) is a Gibbs measure
with the interaction F, notation m ¥ G(F), if and only if the finite-volume
Gibbs measures mtL for different t and L form a version of the conditional
probabilities of m, i.e., if

mtL(A)=m[A |FLc](t) m-a.s., -A ¥F. (2.1)
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A measure is called Gibbs if it is an element of G=1F ¥B1
G(F). (2.1)

implies that every m ¥ G admits a continuous version of its conditional
probabilities. Up to a non-nullness requirement, this condition is necessary
and sufficient (see refs. 8, 15, and 5). An equivalent characterization for m
to be Gibbs (see ref. 3) is the following. For x ¥ Zd, let sx denote the con-
figuration s flipped at x, i.e.,

sx(y)=(1−s(x)) dx, y+(1−dx, y) s(y).

For m a probability measure on (W,F), mx denotes the corresponding
transformed measure:

F f(s) mx(ds)=F f(sx) m(ds).

The following relation between conditional probabilities and the Radon–
Nikodym derivatives is obvious:

m[s(x) |FZd0x](t)=
1

1+dm
x

dm [sxtZd0x]
(2.2)

and therefore the one-site conditional probabilities are continuous if and
only if the Radon–Nikodym derivatives dm

x

dm are continuous. This gives

Lemma 2.3. A probability measure m on W is a Gibbs measure if
and only if the Radon–Nikodym derivative dm

x

dm admits a continuous version
for all x ¥ Zd.

Note that dm
x

dm ¥ C(W) automatically implies that
dmx

dm is bounded away
from zero and infinity since

dmx

dm
(s)=1dm

x

dm
(sx)2

−1

.

2.3. Dynamics

Our dynamics are Feller processes generated by local rates. These
processes have path-space measures Ps concentrating on the space
D([0, t], W) of càdlàg trajectories w: [0, t]Q W. We focus on three cases:
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1. Kawasaki dynamics (exclusion with speed change).

2. Kawasaki+Glauber dynamics (exclusion with speed change plus
births and deaths of particles).

3. General reversible local dynamics.

Of course, cases 1 and 2 are contained in case 3, but in the proof we will
restrict to cases 1 and 2 and show afterwards how to generalize to case 3.
This allows us to avoid setting up a labyrinth of unnecessary complicated
notations. We now define the different types of dynamics more in detail.

2.3.1. Kawasaki Dynamics

The particles occupations are exchanged in configuration s for nearest-
neighbor bonds OxyP at rate c(x, y, s). More precisely, the process is
defined by the generator L acting on f ¥L:

(Lf)(s)=C
OxyP
c(x, y, s)[f(sxy)−f(s)], (2.4)

where

sxy(z)=(1−dz, x)(1−dz, y) s(z)+dx, zs(y)+dy, zs(x).

In words, sxy is the configuration obtained from s by exchanging particle
occupation numbers at site x and y. The special ‘‘non-interacting’’ case,
where c(x, y, s)=1 for all OxyP and s, corresponds to the simple symme-
tric exclusion process (SSE). We impose the following conditions on the
rates:

1. Translation invariance: for all x, y ¥ Zd, s ¥ W: c(x, y, s)=
c(0, y−x, yxs).

2. Strict positivity: c(x, y, s) > 0, for all nearest neighbor bonds
OxyP, s ¥ W.

3. Locality: cxy: sW c(x, y, s) ¥L for all x, y ¥ Zd.

For n a probability measure on (W,F), nxy is defined via its action on
local functions f

F f(s) nxy(ds)=F f(sxy) n(ds).
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We then ask

4. Detailed balance for a Gibbs measure n: there exists n ¥ G with
Fn ¥Bf.r. such that

c(x, y, s)
c(x, y, sxy)

=
dnxy

dn
(s)=exp 5 C

A 5 {x, y} ]”
Fn(A, s)−Fn(A, sxy)6 (2.5)

for n-almost every s ¥ W.

In ref. 11, the existence of a unique Feller process Ps (starting from
s ¥ W) with generator L is proved. We denote its semi-group by (S(t))t ¥ R

+:

-t \ 0, -f ¥L, (S(t) f)(s)=Es[f(st)]

and for m a probability measure, we define mS(t) via

F f(s)(mS(t))(ds)=F m(ds) S(t) f(s).

The fourth condition implies that the Gibbs measure n is reversible for
the process with generator L, i.e., when started from n, the processes
{st: 0 [ t [ T} and {sT−t: 0 [ t [ T} are equal in distribution, or, equiva-
lently, L and its semi-group S(t)=exp(tL) are self-adjoint operators on
L2(n).
In the case c(x, y, s)=1 (SSE), the reversible measures n coincide with

the Bernoulli product measures nr, 0 [ r [ 1 corresponding to single-site
interactions Fn (homogeneous magnetic fields). In general, n will not be
unique since the dynamics has a conserved quantity.

2.3.2. Kawasaki+Glauber

In that case, the generator is given by

(Lf)(s)= C
x ¥ Zd

c(x, s)[f(sx)−f(s)]+C
OxyP
c(x, y, s)[f(sxy)−f(s)],

(2.6)

where the extra birth and death rates c(x, s) satisfy

1. Translation invariance: for all x ¥ Zd, s ¥ W: c(x, s)=c(0, yxs).

2. Strict positivity: c(x, s) > 0, for all x ¥ Zd, s ¥ W.

3. Locality: cx: sQ c(x, s) ¥L for all x ¥ Zd.
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4. Detailed balance: for a measure n ¥ G with Fn ¥Bf.r. of Section 2.3.1,

c(x, s)
c(x, sx)

=
dnx

dn
(s)=exp 5 C

A ¦ x
Fn(A, s)−Fn(A, sx)6 (2.7)

for n-almost every s ¥ W.

The special case c(x, y, s)=c(x, s)=1 corresponds to simple symme-
tric exclusion with independent births and deaths of particles. In that case,
the Bernoulli measure n1

2
is reversible.

2.3.3. General Reversible Local Dynamics

This section generalizes the two previous examples: instead of consid-
ering only spin-flip and spin-exchange we can allow more general trans-
formations which change the configuration locally. More precisely, con-
sider a set of transformations T0 such that every T ¥T0 is a local bijection
T: WQ W, i.e., there exists L(T) ¥S with (T(s))(y)=s(y) for all
y ¨ L(T). To T ¥T0, we associate the rate c(T, s) which is assumed to be a
strictly positive function of s. We then define the generator corresponding
to the setT0 as

-s ¥ W, (Lf)(s)= C
x ¥ Zd

C
T ¥Tx

c(x, T, s)[f(Ts)−f(s)] (2.8)

whereTx={yx p T0 p y−x : T0 ¥T0} and for T ¥Tx, such that T=yx p T0 p y−x,
c(x, T, s)=c(T0, y−xs). This definition ensures translation invariance of
the dynamics. In words, this dynamics acts as follows: at each site x, we
locally transform the configuration s according to the transformation Tx,
at rate c(x, Tx, s). The particular non-interacting case c(x, Tx, s)=1 corre-
sponds to application of the transformation Tx at the event times of inde-
pendent rate one Poisson processes. In that case, the Bernoulli measure n1

2

is reversible. In the interacting case, we can impose the existence of a
reversible n ¥ G with Fn ¥Bf.r., i.e., n satisfies

dnTx
dn
=

c(x, Tx, s)
c(x, Tx, T

−1
x s)
,

where nTx is defined via

F f(s) nTx(ds)=F f(Txs) n(ds), -x ¥ Zd, Tx ¥Tx.
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In the examples of the two previous sections, the transformations T ¥T0
are spin-flip at the origin Ts=T0s=s0, and spin-exchange of nearest
neighbor bonds around the origin Ts=T0es=s0e.

2.4. Poisson Representation of Non-Interacting Cases

In the non-interacting case (SSE, SSE+BD, c(T, s)=1), we have a
simple representation of the process generated by a generator L0 in terms
of independent rate one Poisson processes. We describe this representation
here in the three different cases.

Simple symmetric exclusion process (SSE):

L0f(s)=C
OxyP
[f(sxy)−f(s)]. (2.9)

Given a collection of independent (rate one) Poisson processes indexed
by nearest neighbor bonds, {NOxyP

t : t \ 0, OxyP ¥ B(Zd)}, a version of the
process with generator L0 is obtained by applying sW sxy at each event
time of the Poisson process NOxyP

t .

SSE+birth and death (SSE+BD):

L0f(s)=C
OxyP
[f(sxy)−f(s)]+C

x
[f(sx)−f(s)]. (2.10)

The collection of independent (rate one) Poisson processes {NOxyP
t : t \ 0,

OxyP ¥ B(Zd)} 2 {Nxt : t \ 0, x ¥ Zd} is now indexed by both bonds and
sites. A version of the process with generator L0 is obtained as follows:
at the event times of NOxyP

t , apply sW sxy, at the event times of Nxt , apply
sW sx.

General case:

L0f(s)=C
x

C
T ¥Tx

[f(Ts)−f(s)]. (2.11)

Consider the collection of independent (rate one) Poisson processes
{NTt : t \ 0, T ¥Tx, x ¥ Zd}. A version of this process is obtained by apply-
ing sQ Ts at the event times of NTt .

3. RESULT AND SKETCH OF PROOF

We consider a local dynamics with generator (2.8), and corresponding
reversible Gibbs measure n. We start the dynamics from a Gibbs measure m.
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To avoid trivialities, the interaction Fm ¥Bf.r. is chosen such that G(Fm) ]
G(Fn), i.e., Fm and Fn are not physically equivalent. We then have

Theorem 3.1. There exists t0=t0(Fm, Fn) > 0 such that for all
t [ t0, mt=mS(t) is a Gibbs measure.

The rest of the paper is devoted to the proof of Theorem 3.1. The
main steps are:

1. Non-interacting case: SSE.

2. Non-interacting case: SSE+BD.

3. Interacting case: Kawasaki+Glauber.

4. General case.

We consider L ¥S, s ¥ W, and abbreviate

HL(s)= C
A … L

[Fn(A, s)−Fm(A, s)]

and with a boundary condition t ¥ W,

Ht
L(s)= C

A 5 L ]”

[Fn(A, sLtLc)−Fm(A, sLtLc)].

We also denote PLs for the path-space measure of the process in volume L
(with free boundary conditions) and ELs the corresponding expectation. For
the Kawasaki dynamics, e.g., this means that in the process with law PLs
exchanges along the bond OxyP are performed at rate c(x, y, s) if this
function depends only on the spins s(z), z ¥ L. For the other bonds OxyP
inside L, the exchange rate is chosen such that c(x, y, s) (x, y ¥ L) satisfies

c(x, y, s)
c(x, y, sxy)

=
dnxyL
dnL
(s)=exp 5 C

A 5 {x, y} ]”, A … L

Fn(A, s)−Fn(A, sxy)6

(3.2)

For this finite volume process, the free boundary condition Gibbs measure

nL(sL)=
1
ZL
exp 1 − C

A … L

Fn(A, s)2

is reversible.
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The following lemma is proved in ref. 4.

Lemma 3.3. If, for x ¥ Zd, the sequence of functions

YxL, t: sW
ELsx[e

HL(st)]
ELs [e

HL(st)]
(3.4)

converges uniformly as L ‘ Zd to a continuous function Yxt , then the func-
tion Yxt ·

dnx

dn is a continuous version of the Radon–Nikodym derivative
dm S(t)x

dm S(t) , and the measure mS(t) is Gibbs.

The strategy to prove that YxL, t converges uniformly is to obtain a
convergent cluster expansion of

ln ELs [e
HL(st)−HL(s0)]= C

C … L

a(C) w ts(C).

where a(C) are combinatorial (s-independent) factors and w ts(C) are
cluster weights. As long as t is sufficiently small, the configuration st can
be seen as a sea of the initial configuration s0=s and isolated islands
where something changed. The cluster weights w ts(C) are then controlled
for small t > 0 via the Kotecký–Preiss criterion, (7) uniformly in s and will
give us uniform absolute convergence of the series

C
C ¦ x
a(C) w ts(C)

which clearly implies uniform convergence of the quotient in (3.4).

Remark. In Lemma 3.2, the reversibility of the dynamics is used.
This assumption can be replaced by the condition that the dynamics admits
a stationary Gibbs measure n with finite range interaction. In that case, in
(3.4) we have to replace the expectations Es by expectations in the time-
reversed process with semigroup Sg(t) (the adjoint of S(t) in L2(n)).

4. PROOF OF THE THEOREM

4.1. Non-Interacting Case SSE

4.1.1. Fm Nearest Neighbor

By Lemma 3.3, it suffices to prove the uniform convergence of

ELsx[e
HL(st)−HL(s0)]

ELs [e
HL(st)−HL(s0)]
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for t small enough. We remind the notation HL(s)=;A … L [Fn(A, s)−
Fm(A, s)] which in this case (Fn=0) reduces toHL(s)=−;A … L [Fm(A, s)].
For a given realization w of the Poisson process {N sb: 0 [ s [ t, b ¥ B(L)},
we define the set of active bonds by

A(w)={b ¥ B(L) : ,bŒ ¥ B(L) s.t. d(b, bŒ) [ 1 andN tb+N
t
bŒ > 0}. (4.1)

Next we decomposeA(w) into disjoint maximally connected components

A(w)= 0
i=1· · · n

ci(w).

We denote by “c the (nearest neighbor) inner boundary of a connected set
of bonds c and with these notations, we obtain

ELs [exp(HL(st)−HL(s))]=C
.

n=1

1
n!

C
(c1,..., cn)c … L

3D
n

i=1
w ts(ci)4 e−t |B(L)| (4.2)

where the sum ;(c1,..., cn)c … L
is over all the compatible (disjoint) maximal

components ci (called polymers in ref. 7) of L. With a slight abuse of nota-
tion we use the symbol c both for a set of bonds and for the set of sites
spanned by the bonds, i.e., the set {x ¥ Zd : ,b ¥ c with b=OxyP}. The
weights are given by

w ts(c)=ELs [exp(H
s
c (st)−H

s
c (s)) Fc(w)] e

t |c| (4.3)

where Fc is a function of the realization w of the Poisson processes, defined
as follows:

Fc(w)=I{c is a maximally connected component ofA(w)}

=1 D
b ¥ “c

1Ntb=0
2 I{-b ¥ c, ,bŒ ¥ c, d(b, bŒ) [ 1, N tb+N tbŒ > 0}.

The factor e t |c| arises from the probability

PLs 5N tb=0, -b ¥ B(L)<0
n

i=1
ci6=exp 3 −t 5|B(L)|− C

n

i=1
|ci |64 .

The factorization of the weights in (4.2) follows from the fact that the
function

Yc(w)=exp(H
s
c (st)−H

s
c (s)) Fc(w) (4.4)

1084 Le Ny and Redig



is a function of the Poisson processes {N sb: 0 [ s [ t, b ¥ c}. Therefore, by
the independence of these Poisson processes, for c 5 cŒ=”, Yc and YcŒ are
independent.
In order to apply the Kotecký–Preiss criterion (7) and to write down a

convergent (uniformly in s) expansion of the logarithm of the series in (4.2)
for t small enough, it suffices to prove that the weights satisfy the bound

|w ts(c)| [ e
−c(t) |c| (4.5)

where c(t)0+. as t a 0 and is independent of s. Indeed, by definition of
the polymers c, for b ¥ B(L) one easily obtains the bound

|{c: c ¦ b, |c|=n}| [ exp(an) (4.6)

where a > 0 is a constant depending only on the dimension. Therefore, the
estimate (4.5) implies the the Kotecký Preiss criterion for t small enough.
To obtain this bound (4.5), we use the following estimates

sup
s, t, g
[exp(Hs

c (t)−H
s
c (g))] [ e

|c| C(Fm) (4.7)

(where we can choose, e.g., C(Fm)=2;A ¦ 0 ||F
m
A ||.) and the fact that

,c > 0, a(d) > 0, E(d) ¥ ]0, 1[ such that

PLs [-b ¥ c, ,bŒ ¥ c, d(b, bŒ) [ 1, N
t
b+N

t
bŒ > 0] [ C(1−e

−a(d) t)E(d) |c|. (4.8)

To see this, first take d=1; the event is then simply that of any two nearest
neighbor bonds at least one had a Poisson event, i.e., we can choose
a(1)=2, E(1)=1

2 . For general d, any cube of size 2 contained in c must
have at least one Poisson event.
Combining (4.3), (4.7) and (4.8), we obtain estimate (4.5) if

C(1−e−a(d) t)E(d) e teC(F
m) < 1 (4.9)

which is realized as soon as t is small enough, i.e., 0 [ t [ t0 with
t0=t0(Fm). For such a t, we can write

ln ELs [exp(HL(st)−HL(s0))]= C
Cm.i. … L

a(C) w ts(C)

where the sum over C runs over all clusters, i.e., multi-indices of compat-
ible contours c. The cluster weights w ts(C) and w

t
sx(C) differ only for
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clusters C containing x. Moreover, since the estimate in (4.5) is uniform
in s, we have

lim
L ‘ Zd

C
L ¦ x, C 5 Lc ] 0

a(C) sup
s

|w ts(C)|=0.

Therefore, writing

jxL, t(s)=
ELsx[e

HL(st)−HL(s0)]
ELs [e

HL(st)−HL(s0)]
=exp 3 C

C ¥ L, C ¦ x
a(C)[w tsx(C)−w

t
s(C)]4 ,

(4.10)

we conclude uniform convergence of jxL, t(s) as L ‘ Zd for t [ t0, and hence
the same holds for YxL, t.

4.1.2. Fm Finite Range

In this case, we redefine the set of active bonds

A(w)={b ¥ b(L) : ,bŒ, d(b, bŒ) [ Rm andN
t
bŒ(w) > 0}

where Rm is the range of the interaction of the starting Gibbs measure. We
then decompose

A=0
n

i=1
ci

into maximally (nearest neighbor) connected contours and define the Rth
inner boundary, resp. interior, of c to be “R c={x ¥ c, ,y ¨ c, |x−y| [ R},
respectively c°R=c0“R c. With these notations, we still have

ELs [exp(HL(st)−HL(s))]=C
.

n=1

1
n!

C
(c1,..., cn)c … L

3D
n

i=1
w ts(ci)4 e−t |B(L)|,

where

w ts(c)=ELs [exp(H
s
c (st)−H

s
c (s)) Fc(w)] e

t |c|

but

Fc(w)=I{c is a maximally connected component ofA(w)}

is now written as

1 D
b ¥ “R c

1Ntb=0
2 Gc°R (w)
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with

Gc°R (w)=I{-b ¥ c°R, ,bŒ ¥ c°R, d(b, bŒ) [ R, N
t
b+N

t
bŒ > 0}.

Here we have the estimate

ELs [Fc(w)] [ (1−e
−t(R+1)d)

|c°
R
|

(R+1)d (4.11)

[ ((1−e−t(R+1))
1

(R+1)d) |c| CR. (4.12)

From this estimate we obtain again like in (4.5)

|w ts(c)| [ e
−a(R, t) |c|

where a(R, t)Q. as t a 0.

4.2. Non-Interacting Case SSE+BD

We consider the general case with Fm finite range. We again need
to redefine the active bonds. Given a trajectory w of the process we call
a site x active if there exists a bond b ¥ B(L) such that d(x, b) [ Rm and
N tb(w) > 0 or there exists a site y ¥ L such that d(x, y) [ Rm and N

t
y > 0.

We denote again A(w)={x ¥ L, x is active} and decompose it A(w)=
1n
i=1 ci, where ci are the mutually disjoint maximally connected compo-
nents of A. To set up a similar expansion, we introduce the following
notation: for A ¥S, denote

t(A)=|{OxyP: x ¥ A, y ¥ A}|+|A|. (4.13)

With these notations, we write:

ELs [exp(HL(st)−HL(s))]=e
−tt(L) C

.

n=1

1
n!

C
(c1,..., cn)c … L

3D
n

i=1
w ts(ci)4 ,

where

w ts(c)=ELs [exp(H
s
c (st)−H

s
c (s)) Fc(w)] e

tt(c) (4.14)

with

Fc(w)=I{c is a maximally connected component ofA(w)}.
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It is then easily verified that

ELs [Fc(w)] [ e
−a(R, t) |c|

where a(R, t)Q. as t a 0. Here, since |t(c)| [ C |c|, we obtain

|w ts(c)| [ e
−aŒ(R, t) |c|

where aŒ(R, t)Q. as t a 0.

4.3. General Non-Interacting Case

We consider general reversible local dynamics as introduced in (2.11)
and start from a Gibbs measure for a general finite range interaction
Fm ¥Bf.r. with range Rm. The range Rd of the dynamics generated by the
transformations in T0 is defined as the radius of the minimal ball B(0, Rd)
with center 0 such that for all T ¥T0, L(T) … B(0, Rd). We define
R=max{Rd, R(Fm)} and introduce the set of active sites for a trajectory
w ¥ D([0, t], WL):

A(w)={x ¥ L : ,y ¥ L, d(x, y) [ R andNTt > 0

for some T ¥1z Tz with L(T) ¦ y}.

The same expansion as in Section 4.2. now applies after redefining

t(A)=|{T: L(T) … A}|.

4.4. General Case

We consider general local dynamics as introduced in Section 2.3.3,
with a Gibbs measure n for a finite range interaction Fn as reversible
invariant measure. We use a Girsanov formula (see ref. 1 or ref. 12) to go
back to case 4.3. Denote PLs for the path-space measure on D([0, t], WL) of
the interacting process in volume L, and PLs, 0 for the path-space measure of
the non-interacting case. We have

dPLs
dPLs, 0

(w)=exp 3 C
x ¥ L

C
T ¥Tx

F
t

0
log c(x, T, ws) dN

T
s+F

t

0
(c(x, T, ws)−1) ds4

(4.15)
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and hence

ELs [exp{HL(st)}]=ELs, 0 5exp 3HL(st)+C
x ¥ L

C
T ¥Tx

1F t
0
log c(x, T, ws) dN

T
s

−F
t

0
(c(x, T, ws)−1) ds246 (4.16)

This can be written in the form ELs (exp{U
t
L}) where U is defined on trajec-

tories w ¥ D([0, t], WL) by

U t
L(w)=HL(w(t))+C

x ¥ L
C
T ¥Tx

1F t
0
log c(x, T, ws) dN

T
s

−F
t

0
(c(x, T, ws)−1) ds2 . (4.17)

We can now expand in a similar way the logarithm of the expectation

ELs, 0(exp(U
t
L(w)−U

t
L(s̄)) (4.18)

where s̄ denotes the trajectory constantly equal to the initial configuration s.
In order to obtain factorization of the polymer weights, first introduce a
new range related to the region affected by the transformations T, to the
finite range potential Fm, and to the range RŒ of the rates c(x, T, · ) and
define

R=max{Rm, Rd, RŒ}.

Using this R we define the active sites A(w) as in Section 4.3 and decom-
pose them into maximally connected components ci. The only additional
problem in the control of the polymer weights are the additional Girsanov
factors, i.e., the polymer weights are given by the same expression as in
(4.14), with Hc(st) replaced with U t

c(w) and Hc(s) replaced with U t
L(s̄).

To control the Girsanov factors in these weights, use

Ecs, 0 5exp 3 C
x ¥ c

C
T ¥Tx

F
t

0
log c(x, T, ws) dN

T
s −F

t

0
(c(x, T, ws)−1) ds46 [ ea |c| t

where 0 < a <.. This estimate is an immediate consequence of the fact
that under the measure Pcs, 0, {N

T: T ¥Tx, x ¥ c} are independent rate one
Poisson processes.
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